Biomass-derived 2-methyltetrahydrofuran platform: a focus on precious and non-precious metal-based catalysts for the biorefinery
Abstract
Biomass conversion to platform chemicals, value-added chemicals, or fuels is important because it provides a sustainable or carbon-neutral alternative to fossil fuel feedstocks. During the conversion of biomass into useful chemicals or fuels, the recalcitrant cell wall of the biomass feedstock is first broken down into useful sugars that can be converted over chemical catalysts or enzymes. Converting sugars to biofuels or useful chemicals over biological enzymes can be costly. Therefore, current research is more aligned with the employment of functionalized metal catalysts, which are preferred owing to their stability, recyclability, and easy separability. 2-Methyltetrahydrofuran (MTHF) is a vital sugar-derived platform chemical that is used as a green solvent, fuel additive, or as the starting material for synthesizing downstream chemicals such as dienes, pentane, and 2-pentanone. Based on MTHF formation from sugar derivatives and its further conversion over catalysts, this review discusses the challenges faced during the conversion of biomass to MTHF on precious and non-precious metal-based catalysts and the successive catalytic conversion of MTHF as a platform chemical to value-added downstream chemicals. Finally, the conclusions and perspectives for this catalytic biorefinery are proposed with future recommendations.
- This article is part of the themed collections: Green Chemistry Reviews and 2022 Green Chemistry Hot Articles