Issue 11, 2022

Regulation of iron and cadmium uptake in rice roots by iron(iii) oxide nanoparticles: insights from iron plaque formation, gene expression, and nanoparticle accumulation

Abstract

The application of iron oxide nanoparticles (FeNPs) can alleviate cadmium (Cd) accumulation in rice. However, the effect of FeNPs on the interaction between Fe and Cd during uptake in rice roots remains poorly understood. Herein, Fe2O3 NPs were applied to rice in a hydroponic experiment under Cd stress. The application of FeNPs significantly decreased the Cd concentrations in roots and shoots and reduced the Fe concentration in shoots. Fe plaque formation was significantly enhanced either by FeNPs or Cd stress; however, the ratios of CdFe plaque/Cdwhole plant and CdFe plaque/FeFe plaque indicated that the contribution of Fe plaque to alleviating Cd uptake was limited. Gene expression quantification suggested that the presence of FeNPs inhibited the uptake of Fe2+ and Cd2+via OsNRAMP5, OsCd1, OsIRT1 and OsIRT2 transporters, but it facilitated the uptake of Fe(III) via the OsYSL15 transporter. TEM-EDS evidenced the accumulation of FeNP aggregates in both the symplast and apoplast of roots, particularly in the symplast, which strongly restricted the root-to-shoot translocation of Cd and Fe, resulting in the Fe accumulation in shoots being even lower than those without FeNPs. This study provides a comprehensive understanding of the regulation mechanisms of Fe and Cd uptake in rice roots by FeNPs from the perspectives of Fe plaque, gene expression, and NP accumulation. The finding that FeNP accumulation in rice roots restricted Fe translocation to the shoot suggested that further investigation needs to optimize the distribution of Fe to rice grains during FeNP application.

Graphical abstract: Regulation of iron and cadmium uptake in rice roots by iron(iii) oxide nanoparticles: insights from iron plaque formation, gene expression, and nanoparticle accumulation

Supplementary files

Article information

Article type
Paper
Submitted
20 mai 2022
Accepted
25 août 2022
First published
27 août 2022

Environ. Sci.: Nano, 2022,9, 4093-4103

Regulation of iron and cadmium uptake in rice roots by iron(III) oxide nanoparticles: insights from iron plaque formation, gene expression, and nanoparticle accumulation

G. Huang, D. Pan, M. Wang, S. Zhong, Y. Huang, F. Li, X. Li and B. Xing, Environ. Sci.: Nano, 2022, 9, 4093 DOI: 10.1039/D2EN00487A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements