Self-trapped exciton to dopant energy transfer in Sb3+-doped Cs2ZrCl6 perovskite variants
Abstract
As a promising way to modulate the photoluminescence properties and stability of perovskites and perovskite variants, doping has attracted wide attention in the field of optical and optoelectronic applications. In this work, a series of all inorganic lead-free Sb3+-doped Cs2ZrCl6 vacancy-ordered perovskite variants were prepared by the hydrothermal method, and the Sb3+-doping leads to singlet and triplet state emissions, which are strongly dependent on the temperature and surrounding molecular environment. Furthermore, efficient energy transfer can be observed from self-trapped excitons (STEs) of [ZrCl6]2− octahedra to dopant Sb3+. Our results will shed light on the ns2 Sb3+-ion-doping-induced emissive mechanism and expand the understanding of the optoelectronic properties of the perovskite variant family.
- This article is part of the themed collection: 2021 Materials Chemistry Frontiers HOT articles