Large-area synthesis of transition metal dichalcogenides via CVD and solution-based approaches and their device applications
Abstract
For the last decade, two-dimensional transition metal dichalcogenides (TMDCs) have attracted considerable attention due to their unique physical and chemical properties. Novel devices based on these materials are commonly fabricated using the exfoliated samples, which lacks control of the thickness and cannot be scaled. Therefore, the synthesis of large-area TMDC thin films with a high uniformity to advance the field is required. This article reviews the latest advances in the synthesis of wafer-scale thin films using chemical vapor deposition methods. The key factors that determine the electrical performance of TMDCs are introduced, including the interfacial properties and defects. The latest solution-based techniques which suggest the opportunity to obtain large-area TMDC thin films with a low-cost process and the potential applications in electronics and optoelectronics are also discussed. The outlook for future research directions, challenges, and possible development of 2D materials are further discussed.
- This article is part of the themed collections: Recent Review Articles and Chemistry of 2D materials: graphene and beyond