The role of photoinduced charge transfer for photocatalysis, photoelectrocatalysis and luminescence sensing in metal–organic frameworks
Abstract
Metal–organic frameworks (MOFs) have emerged as promising porous optoelectronic compositions for energy conversion and sensing applications. The enormous structural possibilities, the large variety of photo- and redox-active building blocks along with several post-synthetic functionalization strategies make MOFs an ideal platform for photochemical and photoelectrochemical developments. Because MOFs assemble all the active building units in a dense fashion, the non-aggregated yet proximally positioned species ensure efficient photon absorption to drive photoinduced charge transfer (PCT) reactions for energy conversion and sensing. Hence, understanding the PCT processes within MOFs as a function of the topological and electronic structures of the donor–acceptor (D–A) moieties can provide transformative strategies to design new low-density compositions.
- This article is part of the themed collections: Spotlight Collection: Photoinduced redox chemistry and 2020 Frontier and Perspective articles