Colloidal nanoparticle inks for printing functional devices: emerging trends and future prospects
Abstract
Colloidal nanoparticles have been widely studied and proven to have unique and superior properties compared to their bulk form and are attractive building blocks for diverse technologies, including energy conversion and storage, sensing, electronics, etc. However, transforming colloidal nanoparticles into functional devices while translating their unique properties from the nanoscale to the macroscale remains a major challenge. The development of advanced manufacturing methodologies that can convert functional nanomaterials into high-performance devices in a scalable, controllable and affordable manner presents great research opportunities and challenges for the next several decades. One promising approach to fabricate functional devices from nanoscale building blocks is additive manufacturing, such as 2D and 3D printing, owing to their capability of fast prototyping and versatile fabrication. Here, we review recent progress and methodologies for printing functional devices using colloidal nanoparticle inks with an emphasis on 2D nanomaterial-based inks. This review provides a comprehensive overview on four important and interconnected topics, including nanoparticle synthesis, ink formulation, printing methods, and device applications. New research opportunities as well as future directions are also discussed.
- This article is part of the themed collections: Recent Review Articles and Journal of Materials Chemistry A Emerging Investigators