On the nucleophilic derivatization of 4,7-dibromo-[1,2,5]thiadiazolo[3,4-c]pyridine: basis for biologically interesting species and building blocks for organic materials†
Abstract
Delving into the scarcely explored versatility and selectivity of 4,7-dibromo-[1,2,5]thiadiazolo[3,4-c]pyridine towards aromatic nucleophilic substitution, eleven new compounds were synthesized using different nucleophiles (alcohols, amines, and thiols). The compounds described herein allow us to get a glimpse of important building blocks for the synthesis of biologically attractive molecules and for organic materials or species with fluorescence properties. Given the structural diversity of the electron-donating substituents, the effect of the functional groups introduced was studied through a tandem experimental-theoretical approach to analyze the electronic properties bestowed on the TDAP core. Insights into the selectivity towards a single position and the differences between nucleophiles were achieved through a DFT analysis of the energetics of the reactions performed.
- This article is part of the themed collection: Celebrating recent chemical science in Mexico