Device for whole genome sequencing single circulating tumor cells from whole blood†
Abstract
Whole-genome sequencing on circulating tumor cells (CTCs) at the single cell level has recently been found helpful for precision medicine, as the oncogenic profiles of single CTCs are useful for discovering oncogenic mutation heterogeneities and guiding/adjusting cancer treatment. To overcome the limits of existing methods of single CTC sequencing, in which CTC enrichment, identification and gene amplification are performed by discrete modules, this study presents a novel method in which all processing steps from blood sample collection to preparation of gene amplification products for sequencers are finished in a single microfluidic chip. This microfluidic chip comprehensively performs blood filtering, CTC enrichment, CTC identification/isolation, CTC lysis and whole genome amplification (WGA) at the single cell level. By sequencing single CTCs from clinical blood samples with pointing key driver and drug-resistance mutations, the novel microfluidic chip was validated to be capable of genetically profiling single CTCs with minimum cell loss/human labor, and more importantly, high accuracy and repeatability, which are crucial factors for promoting clinical application of single CTC sequencing.
- This article is part of the themed collection: Personalised Medicine: Liquid Biopsy