Li8NaRb3(SO4)6·2H2O as a new sulfate deep-ultraviolet nonlinear optical material†
Abstract
Sulfates have long been ignored as nonlinear optical materials over the past decades. Here we report a new sulfate deep-ultraviolet nonlinear optical material Li8NaRb3(SO4)6·2H2O synthesized by the facile water solution method. It crystallizes in the asymmetric monoclinic space group C2 (No. 5). Its single-crystal structure features a three-dimensional framework made up of SO4 and LiO4 tetrahedra. Powder second-harmonic generation tests demonstrate that Li8NaRb3(SO4)6·2H2O is phase-matchable with a second-harmonic generation response of about 0.5 × KH2PO4. Ultraviolet-visible-near-infrared diffuse reflectance spectra illustrate that the ultraviolet cutoff edge of Li8NaRb3(SO4)6·2H2O may be as low as λ < 190 nm. Theoretical calculations reveal that the optical properties of Li8NaRb3(SO4)6·2H2O are mainly attributed to S–O groups. All these results reveal that Li8NaRb3(SO4)6·2H2O may possess potential use in the deep-ultraviolet nonlinear optics field. We believe that the discoveries in our work will attract scientists’ attention to sulfate systems for their potential as deep-ultraviolet nonlinear optical materials.
- This article is part of the themed collection: 2018 Journal of Materials Chemistry C HOT Papers