Issue 23, 2017

Structural design principles for low hole effective mass s-orbital-based p-type oxides

Abstract

High mobility p-type transparent conducting oxides (TCOs) are critical to current and future optoelectronic devices such as displays, transparent transistors or solar cells. Typical oxides have flat oxygen-based valence bands leading to high hole effective masses and low mobilities. This makes the discovery of high hole mobility oxides very challenging. Sn2+ oxides are known to form Sn-s/O-p mixtures and dispersive valence bands (low hole effective mass). However, not all Sn2+ oxides exhibit low hole effective mass, pointing to the importance of structural factors. Here, we analyze the electronic structure and chemical bonding of three Sn2+ oxides of interest as p-type oxides: SnO and the two K2Sn2O3 polymorphs. We rationalize the differences in their hole effective masses by their Sn–O–Sn angles. As band dispersion is governed by the orbital overlap, Sn–O–Sn angles near 180° maximize the overlap and minimize the hole effective mass. We show that this principle is generalizable to a larger set of Sn2+ oxides. Our work leads to simple structural design principles for the development of low hole effective mass oxides based on Sn2+ (but also other reduced main group cations) offering a new avenue for the ongoing search for high mobility p-type TCOs.

Graphical abstract: Structural design principles for low hole effective mass s-orbital-based p-type oxides

Supplementary files

Article information

Article type
Paper
Submitted
01 févr. 2017
Accepted
23 mars 2017
First published
28 mars 2017

J. Mater. Chem. C, 2017,5, 5772-5779

Structural design principles for low hole effective mass s-orbital-based p-type oxides

V. Ha, F. Ricci, G. Rignanese and G. Hautier, J. Mater. Chem. C, 2017, 5, 5772 DOI: 10.1039/C7TC00528H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements