Volume 186, 2016

Revealing nanocomposite filler structures by swelling and small-angle X-ray scattering

Abstract

Polymer nanocomposites are used widely, mainly for the industrial application of car tyres. The rheological behavior of such nanocomposites depends in a crucial way on the dispersion of the hard filler particles – typically silica nanoparticles embedded in a soft polymer matrix. It is thus important to assess the filler structure, which may be quite difficult for aggregates of nanoparticles of high polydispersity, and with strong interactions at high loading. This has been achieved recently using a coupled TEM/SAXS structural model describing the filler microstructure of simplified industrial nanocomposites with grafted or ungrafted silica of high structural disorder. Here, we present an original method capable of reducing inter-aggregate interactions by swelling of nanocomposites, diluting the filler to low-volume fractions. Note that this is impossible to reach by solid mixing due to the large differences in viscoelasticity between the composite and the pure polymer. By combining matrix crosslinking, swelling in a good monomer solvent, and post-polymerization of these monomers, it is shown that it is possible to separate the filler into small aggregates. The latter have then been characterized by electron microscopy and small-angle X-ray scattering, confirming the conclusions of the above mentioned TEM-SAXS structural model applied directly to the highly loaded cases.

Associated articles

Article information

Article type
Paper
Submitted
27 juil. 2015
Accepted
01 sept. 2015
First published
01 sept. 2015

Faraday Discuss., 2016,186, 295-309

Author version available

Revealing nanocomposite filler structures by swelling and small-angle X-ray scattering

G. P. Baeza, A. Genix, N. Paupy-Peyronnet, C. Degrandcourt, M. Couty and J. Oberdisse, Faraday Discuss., 2016, 186, 295 DOI: 10.1039/C5FD00117J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements