Mechanism of intramolecular transformations of nickel phosphanido hydride complexes†
Abstract
In solution, nickel phosphanido hydride complexes ([NiH{P(Ar)(H)}(dtbpe)], Ar = Dmp, Mes*) undergo a degenerate intramolecular exchange, with the Ni–H and P–H hydrogens and both halves of the dtbpe moiety interchanging. This intramolecular rearrangement was shown to occur in three steps: first, the hydride proton migrates to phosphorus, then the P-Aryl moiety rotates around the P–Ni bond, and finally the back migration of one proton to Ni completes the process. Both migration and rotation were determined to be characterized by high barriers (on the NMR time scale) and to depend on the type of aryl group at the terminal phosphorus. Compared to that observed for the Ni complexes, the same isomeric preference, but with a slower rate of intramolecular rearrangement, is predicted for the corresponding Pt complexes. An opposite isomeric preference, however, is expected for the corresponding Pd complexes. Thus, it is likely that some of the catalytic reactions of Pd and Pt complexes are driven by the relative thermodynamic stabilities of their main forms.
- This article is part of the themed collection: Phosphorus Chemistry: Discoveries and Advances