Issue 22, 2014

Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting

Abstract

Photocatalytic water splitting represents a promising strategy for clean, low-cost, and environmental-friendly production of H2 by utilizing solar energy. There are three crucial steps for the photocatalytic water splitting reaction: solar light harvesting, charge separation and transportation, and the catalytic H2 and O2 evolution reactions. While significant achievement has been made in optimizing the first two steps in the photocatalytic process, much less efforts have been put into improving the efficiency of the third step, which demands the utilization of cocatalysts. To date, cocatalysts based on rare and expensive noble metals are still required for achieving reasonable activity in most semiconductor-based photocatalytic systems, which seriously restricts their large-scale application. Therefore, seeking cheap, earth-abundant and high-performance cocatalysts is indispensable to achieve cost-effective and highly efficient photocatalytic water splitting. This review for the first time summarizes all the developed earth-abundant cocatalysts for photocatalytic H2- and O2-production half reactions as well as overall water splitting. The roles and functional mechanism of the cocatalysts are discussed in detail. Finally, this review is concluded with a summary, and remarks on some challenges and perspectives in this emerging area of research.

Graphical abstract: Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting

Article information

Article type
Review Article
Submitted
23 nov. 2013
First published
16 janv. 2014

Chem. Soc. Rev., 2014,43, 7787-7812

Author version available

Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting

J. Ran, J. Zhang, J. Yu, M. Jaroniec and S. Z. Qiao, Chem. Soc. Rev., 2014, 43, 7787 DOI: 10.1039/C3CS60425J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements