A dual-heteroatom–lanthanide cluster-embedded polyoxotungstate for sequential fluorescence detection of Fe3+ and pyrophosphate†
Abstract
A neoteric inorganic–organic hybrid dual-heteroatom (HA) and lanthanide (Ln) cluster-bridged polyoxotungstate (POT) [H8BTHMMAP]1.5[H2N(CH3)2]4Na3H[Eu2Bi3(Hpdca)3(H2O)3Te2W3O14][(W5O18)(B-α-BiW9O33)2]·44H2O (1, H6BTHMMAP = 1,3-bis[tris-(hydroxymethyl)methylamino]propane, Hpdca = 2-pyridinic acid) was prepared by the dual-HA template strategy. The skeleton of 1 possesses a three-bladed propeller-shaped [Eu2Bi3(Hpdca)3(H2O)3Te2W3O14]13+ core wrapped by two Keggin [B-α-BiW9O33]9− and one Lindqvist [W5O18]6− segments. Noteworthily, the intricate [Eu2Bi3(Hpdca)3(H2O)3Te2W3O14]13+ unit consisting of a Bi–Te dual-HA-bridged Ln–W polynuclear cluster is rather attractive and rarely seen in POT crystal engineering. Prominently, 1 exhibits an “ON–OFF” luminescence response triggered by Fe3+ based on dynamic quenching and competitive absorption, and the subsequent addition of pyrophosphate (PPi) leads to the recovery of luminescence due to the efficient interaction of Fe3+ and PPi. The developed “ON–OFF–ON” switch allows the consecutive discrimination of Fe3+ and PPi with low detection limits of 1.23 μM and 2.16 μM, respectively. This work provides a profound understanding of the dual-HA template approach in assembling complicated POTs, and shows the great potential of POT materials in environmental and biological detection.
- This article is part of the themed collection: 2024 Inorganic Chemistry Frontiers Review-type Articles