Synthesis of Atomically Precise Ag16 Nanoclusters and Investigating Solvent-Dependent Ultrafast Relaxation Dynamics

Abstract

In this article, the main focus is to employ a new synthetic strategy to prepare atomically precise Ag nanoclusters (NCs) and unveil the critical role of the solvents in the excited state dynamics of Ag NCs. The compositional analysis confirms the formula of the nanoclusters as Ag16(PDT)8(PPh3)4 (Ag-PDT NCs). These NCs showed a sharp absorption band at 525 nm and a comparatively broad absorption band at 633 nm. The emission maximum was 630 nm with a quantum yield (QY) of 0.23%. Three-component relaxation dynamics were retrieved from Global analysis and described as core relaxation (664 fs), core to-surface state relaxation (500 ps), and ground state relaxation (>1 ns) for Ag NCs in DCM solvent. The time constants are slightly higher at 1.25 ps, 624.25 ps, and >1 ns for Ag NCs in DMF solvent because of less effective charge separation. The high QY in DMF follows this low charge separation (0.23% vs 0.63%). The straight-chain dithiol capping agent (with less electron density than an electron-rich aromatic ring) is mainly responsible for this less effective charge separation. Finding the pivotal role of solvent in NCs chemistry will help to characterize it thoroughly and span over the strategy for precise applications in various fields.

Supplementary files

Article information

Article type
Paper
Submitted
10 juin 2024
Accepted
09 août 2024
First published
16 août 2024

Nanoscale, 2024, Accepted Manuscript

Synthesis of Atomically Precise Ag16 Nanoclusters and Investigating Solvent-Dependent Ultrafast Relaxation Dynamics

A. Patra, S. Chakraborty and S. Kolay, Nanoscale, 2024, Accepted Manuscript , DOI: 10.1039/D4NR02392G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements