Issue 16, 2024

Carbon nanomaterials as carriers for the anti-cancer drug doxorubicin: a review on theoretical and experimental studies

Abstract

The incidence of cancer is increasing worldwide in a life-threatening manner. In such a scenario, the development of anti-cancer drugs with minimal side effects and effective drug delivery systems is of paramount importance. Doxorubicin (DOX) is one of the powerful anti-cancer drugs from the chemical family anthracycline, which is used to treat a wide variety of cancers, including breast, prostate, ovarian, and hematological malignancies. However, DOX has been associated with many side effects, including lethal cardiotoxicity, baldness, gastrointestinal disturbances and cognitive function impairment. Even though DOX is administered in liposomal formulations to reduce its toxicity and enhance its therapeutic profile, the liposomal formulations themselves have certain therapeutic profile limitations such as “palmar-plantar erythrodysesthesia (PPE)”, which shows severe swelling and redness in the skin, thus restricting the dosage and reducing patient compliance. In contemporary chemotherapy research, there is a great interest in the utilization of nanomaterials for precise and targeted drug delivery applications, especially using carbon-based nanomaterials. This review provides a comprehensive overview of both experimental and theoretical scientific works, exploring diverse forms of carbon-based materials such as graphene, graphene oxide, and carbon nanotubes that function as carriers for DOX. In addition, the review consolidates information on the fate of the carriers after the delivery of the payload at the site of action through different imaging techniques and the various pathways through which the body eliminates these nanomaterials. In conclusion, the review presents a detailed overview of the toxicities associated with these carriers within the human body, contributing to the development of enhanced drug delivery systems.

Graphical abstract: Carbon nanomaterials as carriers for the anti-cancer drug doxorubicin: a review on theoretical and experimental studies

Article information

Article type
Review Article
Submitted
02 avr. 2024
Accepted
26 avr. 2024
First published
26 avr. 2024
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2024,6, 3992-4014

Carbon nanomaterials as carriers for the anti-cancer drug doxorubicin: a review on theoretical and experimental studies

K. Gayathri and R. Vidya, Nanoscale Adv., 2024, 6, 3992 DOI: 10.1039/D4NA00278D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements