Polymer photocatalysts for photocatalytic hydrogen peroxide production
Abstract
Hydrogen peroxide (H2O2), as a mild oxidant and promising liquid fuel, has widespread application potential in energy and environment fields. Compared with the traditional oxidation of anthraquinone, solar-driven H2O2 production has attracted considerable attention due to its advantages of safety, greenness, and energy conservation. Thanks to structures that are tunable at the molecular level, polymer semiconductors stand out among numerous photocatalysts. In recent years, the solar-to-chemical conversion efficiency of polymer semiconductors has been gradually improved with the constant emergence of new modification strategies. From the perspective of the O2 reduction reaction pathway and the H2O oxidation reaction pathway for H2O2 production, a systematic summary of modification strategies for different polymer semiconductors (graphitic carbon nitride, covalent organic frameworks, covalent triazine frameworks, conjugated microporous polymers, linear conjugated polymers, and resorcinol-formaldehyde resins) can provide valuable guidance for the rational design of polymer photocatalysts. In this review, the fundamental principles of the artificial photosynthesis of H2O2 and the detection methods for photogenerated H2O2 are briefly introduced. Subsequently, we summarize the strategies for improving the H2O2 production efficiency of different polymer semiconductors via different pathways, and highlight their effects on carrier separation and transfer. Finally, the challenges and prospects of polymer semiconductors for the photosynthesis of H2O2 are presented.
- This article is part of the themed collection: 2024 Green Chemistry Reviews