Recent progress in 2D and 3D metal–organic framework-based membranes for water sustainability
Abstract
Metal–organic frameworks (MOFs) have emerged as promising candidates for high-performance separation processes due to their desirable porous structure and highly tunable properties. However, the efficient separation of dyes from industrial wastewater, salts from seawater, and oil/water mixtures remains a critical challenge in many industrial processes. This review focuses on synthesizing two-dimensional (2D) and three-dimensional (3D) MOF-based membranes. Then, we discuss the physicochemical properties, such as tunable pore sizes, surface modifications, and selectivity enhancement of both 2D and 3D MOF-based membranes that make them capable of achieving superior separation performance. Further, the applications of 2D and 3D MOF-based membranes for salt, dye, and oil–water separations are discussed in detail. Furthermore, we examine the separation mechanisms, performance evaluation metrics, and case studies that demonstrate the effectiveness of MOF-based membranes. Additionally, we summarize the current challenges associated with both 2D and 3D MOF-based membranes, including their stability under harsh conditions, fouling, scalability, and cost-effectiveness.
- This article is part of the themed collection: Environmental Science: Water Research & Technology Recent Review Articles