Issue 2, 2025

Composition and structure analyzer/featurizer for explainable machine-learning models to predict solid state structures

Abstract

Traditional and non-classical machine learning models for solid-state structure prediction have predominantly relied on compositional features (derived from properties of constituent elements) to predict the existence of a structure and its properties. However, the lack of structural information can be a source of suboptimal property mapping and increased predictive uncertainty. To address this challenge, we have introduced a strategy that generates and combines both compositional and structural features with minimal programming expertise required. Our approach utilizes open-source, interactive Python programs named Composition Analyzer Featurizer (CAF) and Structure Analyzer Featurizer (SAF). CAF generates numerical compositional features from a list of formulae provided in an Excel file, while SAF extracts numerical structural features from a .cif file by generating a supercell. 133 features from CAF and 94 features from SAF are used either individually or in combination to cluster nine structure types in equiatomic AB intermetallics. The performance is comparable to those with features from JARVIS, MAGPIE, mat2vec, and OLED datasets in PLS-DA, SVM, and XGBoost models. Our SAF + CAF features provide a cost-efficient and reliable solution, even with the PLS-DA method, where a significant fraction of the most contributing features is the same as those identified in the more computationally intensive XGBoost models.

Graphical abstract: Composition and structure analyzer/featurizer for explainable machine-learning models to predict solid state structures

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
17 oct. 2024
Accepted
15 janv. 2025
First published
17 janv. 2025
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2025,4, 548-560

Composition and structure analyzer/featurizer for explainable machine-learning models to predict solid state structures

E. I. Jaffal, S. Lee, D. Shiryaev, A. Vtorov, N. K. Barua, H. Kleinke and A. O. Oliynyk, Digital Discovery, 2025, 4, 548 DOI: 10.1039/D4DD00332B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements