Polydopamine-based plasmonic nanocomposites: rational designs and applications
Abstract
Taking advantage of its adhesive nature and chemical reactivity, polydopamine (PDA) has recently been integrated with plasmonic nanoparticles to yield unprecedented hybrid nanostructures. With advanced architectures and optical properties, PDA-based plasmonic nanocomposites have showcased their potential in a wide spectrum of plasmon-driven applications, ranging from catalysis and chemical sensing, to drug delivery and photothermal therapy. The rational design of PDA-based plasmonic nanocomposites entails different material features of PDA and necessitates a thorough understanding of the sophisticated PDA chemistry; yet, there is still a lack of a systematic review on their fabrication strategies, plasmonic properties, and applications. In this Highlight review, five representative types of PDA-based plasmonic nanocomposites will be featured. Specifically, their design principles, synthetic strategies, and optical behaviors will be elucidated with an emphasis on the irreplaceable roles of PDA in the synthetic mechanisms. Together, their essential functions in diverse applications will be outlined. Lastly, existing challenges and outlooks on the rational design and assembly of next-generation PDA-based plasmonic nanocomposites will be presented. This Highlight review aims to provide synthetic insights and hints to inspire and aid researchers to innovate PDA-based plasmonic nanocomposites.
- This article is part of the themed collection: 2024 Emerging Investigators