Degradation and detection of organophosphorus pesticides based on peptides and MXene–peptide composite materials†
Abstract
Safety problems caused by organophosphorus pesticide (OP) residues are constantly occurring, so the development of new methods for the degradation and detection of OPs is of great scientific significance. In the present study, β-sheet peptides and β-hairpin peptides for catalyzing the hydrolysis of OPs were designed and synthesized. The peptide sequences with the highest hydrolytic activity (EHSGGVTVDPPLTVEHSAG) were screened by investigating the effect of the location of the active sites of the peptide and the peptide's structure on the degradation of OPs. In addition, the relationship between the peptides’ conformation and hydrolytic activity was further analyzed based on density functional theory calculations. The noncovalent interactions of the peptides with the OPs and the electrostatic potential on the molecular surface and molecular docking properties were also investigated. It was found that peptides with approximate active amino acids consisting of the catalytic triad and with the hairpin structure had enhanced hydrolytic activity toward the hydrolysis of OPs. To develop an electrochemical sensor technique to detect OPs, the conductive MXene (Ti3C2) material was first immobilized with a caffeic acid monolayer via enediol–metal complex chemistry and then bound with the β-hairpin peptide (EHSGGVTVDPPLTVEHSAG) via carboxy–amine condensation chemistry between the –COOH of caffeic acid and the –NH2 of the peptide to prepare a MXene–peptide composite. Then, the prepared composite was modified on the surface of a glassy carbon electrode to construct an electrochemical sensor for the detection of OPs. The developed technique could be used to monitor OPs within 15 min with a two orders of linear working range and with a detection limit of 0.15 μM. Meanwhile, the sensor showed good reliability for the detection of OPs in real vegetables.
- This article is part of the themed collection: Analyst HOT Articles 2024