Carbonized polyacrylonitrile array as a sensitive, biocompatible, and durable substrate for surface-enhanced Raman spectroscopy†
Abstract
Surface-enhanced Raman spectroscopy (SERS), which uses surface-sensitive resonances, is an extension of Raman spectroscopy. The SERS method has rapidly emerged as one of the leading analytical techniques with successful applications in many fields. In spite of this, there are still some obstacles that must be overcome before SERS substrates are applied to practical systems, including poor repeatability, uniformity, biocompatibility, and durability. To overcome all these problems, we demonstrate the design, synthesis, and use of a carbonized polyacrylonitrile array as a highly sensitive substrate for the development of biocompatible, consistent, uniform, and durable SERS. Additionally, because of its potent wideband charge-transfer resonance, it offers excellent signal enhancement (105), as well as extraordinary high reproducibility by eliminating hot spots, high biocompatibility, and high durability on account of its oxidation resistance.
- This article is part of the themed collection: Nanomaterial applications in water