Synthesis strategies to control the Al distribution in zeolites: thermodynamic and kinetic aspects
Abstract
The activity and selectivity of acid-catalyzed chemistry is highly dependent on the Brønsted and Lewis acid sites generated by Al substitutions in a zeolite framework with the desired pore architecture. The siting of two Al atoms in close proximity in the framework of high-silica zeolites can also play a decisive role in improving the performance of redox catalysts by producing exchangeable positions for extra-framework multivalent cations. Thus, considerable attention has been devoted to controlling the Al incorporation through direct synthesis approaches and post-synthesis treatments to optimize the performance as (industrial) solid catalysts and to develop new acid- and redox-catalyzed reactions. This Feature Article highlights bottom-up synthetic strategies to fine-tune the Al incorporation in zeolites, interpreted with respect to thermodynamic and kinetic aspects. They include (i) variation in extra-framework components in zeolite synthesis, (ii) isomorphous substitution of other heteroatoms in the zeolite framework, and (iii) control over the (alumino)silicate network in the initial synthesis mixture via in situ and ex situ methods. Most synthetic approaches introduced here tentatively showed that the energy barriers associated with Al incorporation in zeolites can be variable during zeolite crystallization processes, occurring in complex media with multiple chemical interactions. Although the generic interpretation of each strategy and underlying crystallization mechanism remains largely unknown (and often limited to a specific framework), this review will provide guidance on more efficient methods to prepare fine-tuned zeolites with desired chemical properties.
- This article is part of the themed collection: ChemComm Most Popular 2023 Articles