Issue 2, 2023

Evaluation of grade and invasiveness of bladder urothelial carcinoma using infrared imaging and machine learning

Abstract

Urothelial bladder carcinoma (BC) is primarily diagnosed with a subjective examination of biopsies by histopathologists, but accurate diagnosis remains time-consuming and of low diagnostic accuracy, especially for low grade non-invasive BC. We propose a novel approach for high-throughput BC evaluation by combining infrared (IR) microscopy of bladder sections with machine learning (partial least squares-discriminant analysis) to provide an automated prediction of the presence of cancer, invasiveness and grade. Cystoscopic biopsies from 50 patients with clinical suspicion of BC were histologically examined to assign grades and stages. Adjacent tissue cross-sections were IR imaged to provide hyperspectral datasets and cluster analysis segregated IR images to extract the average spectra of epithelial and subepithelial tissues. Discriminant models, which were validated using repeated random sampling double cross-validation, showed sensitivities (AUROC) ca. 85% (0.85) for the identification of cancer in epithelium and subepithelium. The diagnosis of non-invasive and invasive cases showed sensitivity values around 80% (0.84–0.85) and 76% (0.73–0.80), respectively, while the identification of low and high grade BC showed higher sensitivity values 87–88% (0.91–0.92). Finally, models for the discrimination between cancers with different invasiveness and grades showed more modest AUROC values (0.67–0.72). This proves the high potential of IR imaging in the development of ancillary platforms to screen bladder biopsies.

Graphical abstract: Evaluation of grade and invasiveness of bladder urothelial carcinoma using infrared imaging and machine learning

Supplementary files

Article information

Article type
Paper
Submitted
26 sept. 2022
Accepted
28 nov. 2022
First published
16 déc. 2022
This article is Open Access
Creative Commons BY license

Analyst, 2023,148, 278-285

Evaluation of grade and invasiveness of bladder urothelial carcinoma using infrared imaging and machine learning

M. Kujdowicz, D. Perez-Guaita, P. Chlosta, K. Okon and K. Malek, Analyst, 2023, 148, 278 DOI: 10.1039/D2AN01583H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements