Efficient one-pot tandem catalysis of glucose into 1,1,2-trimethoxyethane over W-Beta catalysts†
Abstract
One-pot efficient transformation of glucose into 1,1,2-trimethoxyethane via epimerization, retro-aldol condensation (RAC), acetalization, and etherification processes over W-Beta catalysts in the methanol phase was proposed. Uniform dispersive 0.5 wt% tungsten species stabilized by the silanol nests of the Beta zeolite support led to a high 1,1,2-trimethoxyethane (C5H12O3) yield of 54.2% at 200 °C, 4.0 MPa N2, and 4.0 h. The medium Lewis acid arising from the framework W5+ facilitated the glucose epimerization and RAC reaction while effectively inhibiting the glucose isomerization into fructose, meanwhile, the weak Brønsted acid derived from the residual silanol nests served as the active site for the etherification. The novel reaction pathway from glucose to 1,1,2-trimethoxyethane through C4 and C2 intermediates was also proposed.