Thermal and UV light adaptive polyurethane elastomers for photolithography-transfer printing of flexible circuits†
Abstract
Flexible polymers are widely used in the fields of wearable devices, soft robots, sensors, and other flexible electronics. Combining high strength and elasticity, electrical conductivity, self-healability, and surface tunable properties in one material becomes a challenge for designing polymeric materials for these applications, especially in flexible electronics. Herein, we propose a “two birds with one stone” strategy to synthesize thermal and UV light adaptive polyurethane elastomers with high-strength, self-healable, surface-modifiable and patternable functions for photolithography-transfer printing flexible circuits. The “stone”, dihydroxybenzophenone, plays two roles in the synthesized polyurethanes as both a dynamic covalent bond and a UV-sensitive unit. On one hand, the phenolic group reacts with isocyanate to form a dynamic covalent phenol–carbamate bond, making the polymer self-healable, processable, and surface-embeddable with conductive fillers utilizing dynamic network rearrangement. On the other hand, the benzophenone group acts as a UV-sensitive unit to graft other functional groups to the polymer surface or self-crosslink on the surface under UV irradiation. Based on the dynamic covalent network and UV self-crosslinking properties, self-healable patterned flexible circuits can be obtained by photolithography-transfer printing. The flexible circuits prepared by loading silver nanowires on the dynamically crosslinked polyurethane substrate show little change of electric resistance when stretched up to 125% and can withstand thousands of stretching cycles.
- This article is part of the themed collections: Materials Horizons 2022 Most Popular Articles and 2023 Materials Horizons Lunar New Year collection