Volume 238, 2022

Rotational energy transfer kinetics of optically centrifuged CO molecules investigated through transient IR spectroscopy and master equation simulations

Abstract

A combined experimental and theoretical study of quantum state-resolved rotational energy transfer kinetics of optically centrifuged CO molecules is presented. In the experiments, inverted rotational distributions of CO in rotational states up to J = 80 were prepared using two different optical centrifuge traps, one with the full spectral bandwidth of the optical centrifuge pulses, and one with reduced bandwidth. The relaxation kinetics of the high-J tail of the inverted distribution from each optical trap was determined based on high-resolution transient IR absorption measurements. In parallel studies, master equation simulations were performed using state-to-state rate constants for CO–CO collisions in states up to J = 90, based on data from double-resonance experiments for CO with J = 0–29 and a fit to a statistical power exponential gap model. The model is in qualitative agreement with the observed relaxation profiles, but the observed decay rate constants are smaller than the simulated values by as much as a factor of 10. The observed decay rate constants also have a stronger J-dependence than predicted by the model. The results are discussed in terms of angular momentum and energy conservation, and compared to the observed orientational anisotropy decay kinetics of optically centrifuged CO molecules. Models for rotational energy transfer could be improved by including angular momentum effects.

Graphical abstract: Rotational energy transfer kinetics of optically centrifuged CO molecules investigated through transient IR spectroscopy and master equation simulations

Associated articles

Article information

Article type
Paper
Submitted
23 mars 2022
Accepted
19 avr. 2022
First published
26 avr. 2022

Faraday Discuss., 2022,238, 87-102

Author version available

Rotational energy transfer kinetics of optically centrifuged CO molecules investigated through transient IR spectroscopy and master equation simulations

M. R. Laskowski, T. J. Michael, Hannah M. Ogden, M. H. Alexander and A. S. Mullin, Faraday Discuss., 2022, 238, 87 DOI: 10.1039/D2FD00068G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements