Hydrophilic and anti-adhesive modification of porous polymer microneedles for rapid dermal interstitial fluid extraction†
Abstract
Porous polymer microneedles (MNs) with interconnected structures demonstrate great potential in dermal interstitial fluid (ISF) extraction. However, the fluid extraction rate and the recovery of the extracted ISF by the porous MNs are limited by the poor hydrophilicity and the adhesion of porous MNs. Herein, we present a facile and mild polydopamine (PDA) and poly(ethylene glycol) (PEG) coating strategy for hydrophilic and anti-adhesive modification of porous polymer MNs from a phase inversion method. As a proof-of-concept, taking polysulfone (PSF) as an example, PDA and PEG-coated MNs (PSF@PDA@PEG) are fabricated through the self-polymerization of dopamine and PEG anchoring. Thanks to the hydrophilicity and anti-adhesion of PEG, the resulting PSF@PDA@PEG MNs demonstrate improved hydrophilicity, fast fluid extraction speed, and low target molecular adhesion. Besides, this method can be extended to hydrophobic polymers generally used in medical fields, including polylactic acid (PLA), polyvinylidene fluoride (PVDF), etc. This investigation provides a new road for MN-based off-line analysis in point-of-care testing (POCT).
- This article is part of the themed collection: Journal of Materials Chemistry B HOT Papers