Recent progress in biomass-derived carbon materials used for secondary batteries
Abstract
With rapid economic development, utilization of energy storage is increasingly important. Carbon materials derived from biomass are widely applied in energy storage systems due to their inexpensive and environmentally friendly nature. Compared to other advanced anode materials that have been explored, biomass carbon materials have high specific surface areas, adjustable porous structures, and heteroatoms that facilitate ion transfer and diffusion. To date, a series of porous biomass-derived carbon materials prepared through various methods have been used as anode electrodes of secondary batteries which greatly promoted their capacities. In this paper, we summarize the morphology and pore structure of biomass-derived materials from different precursors and discuss the electrochemical performance of secondary batteries (LIBs, SIBs, KIBs and ASSLMBs) equipped with biomass-derived carbon materials including monomers and composites as anode electrodes. Current research challenges along with future prospects for carbon-based electrode materials to improve secondary battery energy storage performance are emphasized.
- This article is part of the themed collection: Sustainable Energy and Fuels Recent Review Articles