Issue 1, 2021

Multifunctional AIE-ESIPT dual mechanism tetraphenylethene-based Schiff base for inkless rewritable paper and a colorimetric/fluorescent dual-channel Zn2+ sensor

Abstract

Organic fluorescent materials have attracted extensive interests due to their wide applications. However, many organic fluorescent materials are single functional and suffer from complicated synthesis and purification, which significantly limits their practical applications. Herein, a multifunctional tetraphenylethene-based Schiff base (TPESB) was designed via a combination of AIE and ESIPT mechanisms and facilely developed through a one-pot reaction of two commercially available compounds, which exhibit dramatic absorption/fluorescence dual-mode color changes induced by water and zinc ions. By employing TPESB as an imaging layer and water as an ink, an eco-friendly inkless rewritable paper was developed showing great potential application in anti-counterfeiting and information security. Moreover, TPESB can serve as a colorimetric/fluorescent dual-channel sensor for Zn2+ ions with high sensitivity, high selectivity, fast response time, and low detection limit (38.9 nM). Additionally, TPESB displays low cytotoxicity and has been successfully applied for sensing of Zn2+ in living cells. The presented strategy will provide a reference for developing multifunctional materials and expanding their wider application fields.

Graphical abstract: Multifunctional AIE-ESIPT dual mechanism tetraphenylethene-based Schiff base for inkless rewritable paper and a colorimetric/fluorescent dual-channel Zn2+ sensor

Supplementary files

Article information

Article type
Research Article
Submitted
25 août 2020
Accepted
22 sept. 2020
First published
30 sept. 2020

Mater. Chem. Front., 2021,5, 347-354

Multifunctional AIE-ESIPT dual mechanism tetraphenylethene-based Schiff base for inkless rewritable paper and a colorimetric/fluorescent dual-channel Zn2+ sensor

H. Sun, Y. Jiang, J. Nie, J. Wei, B. Miao, Y. Zhao, L. Zhang and Z. Ni, Mater. Chem. Front., 2021, 5, 347 DOI: 10.1039/D0QM00623H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements