Catalytic and non-catalytic hydroboration of carbonyls: quantum-chemical studies†
Abstract
The addition of hydroboranes across several unsaturated moieties is a universal synthetic tool for the reduction or functionalization of unsaturated moieties. Given the sustainable nature of this process, the development of more environmentally-benign approaches (main-group catalysis or uncatalysed approaches) for hydroboration has gained considerable recent momentum. The present paper examines both catalyst-free and KF-mediated hydroboration of carbonyl compounds with the use of quantum-chemical methods. The results of computations for several potential reaction pathways are juxtaposed with experiment-based calculations, which leads to stepwise mechanisms and energy profiles for the reactions of pinacolborane with benzaldehyde and acetophenone (in the presence of KF). For each step of these reactions, we provide an accurate description of the geometric and electronic structures of corresponding stationary points. Five different levels of theory are employed to select the most applicable theoretical approach and develop a computational protocol for further research. Upon selection of the best-performing methods, larger molecular systems are studied to explore possible more complex pathways at the M06-2X/6-311++G(2d,p) and ωB97XD/6-311++G(2d,p) levels of theory, which brings up multi-pathway, overlapping catalytic cycles. The mechanism of solvent-free, catalyst-free hydroboration of aldehydes is also revisited through the prism of the elaborated methodology, which leads to a whole new perspective on the pathways of this and similar reactions, with a multimolecular cascade of hydride transfers being more energetically favoured than a four-membered transition state.
- This article is part of the themed collection: Mechanistic, computational & physical organic chemistry in OBC