Issue 1, 2021

COVID-19 lockdowns induced land surface temperature variability in mega urban agglomerations in India

Abstract

The COVID-19 pandemic forced a nationwide lockdown in India for months when close to 1.3 billion people were confined to their homes. An abrupt halt in the majority of the urban activities reduced the generation of anthropogenic heat which often exacerbates the Urban Heat Island (UHI) effect in the urban pockets of the country. We studied the lockdown impact on seven highly populated and polluted mega urban agglomerations across India, namely Delhi, Ahmedabad, Hyderabad, Kolkata, Mumbai, Bengaluru and Chennai, using near-anniversary Landsat 8 data. The results revealed that the lockdowns have improved the air quality and reduced the Land Surface Temperature (LST) and hence the UHI effect over these cities. Each of the cities experienced an improved Air Quality Index (AQI) ranging from 18 to 151 units except Chennai (with a marginal 8 units increase in AQI), a decrease in mean LST in the range of 0.27 °C to 7.06 °C except Kolkata which showed an increment by ∼4 °C, and a reduction in daily averaged air temperature ranging from 0.3 °C to 10.88 °C except Hyderabad which witnessed an increase of 0.09 °C during the lockdown (April 2020) compared to the previous years (April 2019 and 2018). Delhi exhibited the maximum positive impact of the lockdown in all aspects with two-fold improved air quality, and Ahmedabad showed the least improvement. In addition to the variations in regional land use and land cover and proportion of essential industries that remained operational throughout the lockdown, the geographic location, topography, local meteorology and climate were some of the other factors also responsible for either aiding or overcompensating the large scale LST variabilities observed in these cities. These results hint at an unprecedented opportunity to evaluate the effectiveness of periodic planned lockdowns as a possible mitigating measure to reduce LST spikes and degraded air quality in urban areas in the future.

Graphical abstract: COVID-19 lockdowns induced land surface temperature variability in mega urban agglomerations in India

Article information

Article type
Paper
Submitted
19 août 2020
Accepted
09 déc. 2020
First published
10 déc. 2020

Environ. Sci.: Processes Impacts, 2021,23, 144-159

COVID-19 lockdowns induced land surface temperature variability in mega urban agglomerations in India

D. Nanda, D. R. Mishra and D. Swain, Environ. Sci.: Processes Impacts, 2021, 23, 144 DOI: 10.1039/D0EM00358A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements