Transient absorption measurements of interlayer charge transfer in a WS2/GeS van der Waals heterostructure
Abstract
We introduce germanium sulfide (GeS) as a new layered material for the fabrication of two-dimensional van der Waals materials and heterostructures. Heterostructures of WS2/GeS were fabricated using mechanical exfoliation and dry transfer techniques. Significant photoluminescence quenching of WS2 in the heterostructures indicates efficient charge transfer. Transient absorption measurements were performed to study the dynamics of charge transfer. The results show that the heterostructure forms a type-II band alignment with the conduction band minimum and valence band maximum located in the WS2 and GeS layers, respectively. The ultrafast hole transfer from WS2 to GeS is confirmed by the faster decay of the lower peak value of the differential reflection signal in the heterostructure sample, in comparison to the WS2 monolayer. These results introduce GeS as a promising semiconductor material for developing new novel heterostructures.
- This article is part of the themed collections: Insights into 2D Materials and 2021 PCCP HOT Articles