A dual promotion strategy of interface modification and ion doping for efficient and stable carbon-based planar CsPbBr3 perovskite solar cells†
Abstract
Carbon-based all-inorganic cesium lead bromide (CsPbBr3) halide perovskite solar cells (PSCs) have attracted tremendous attention owing to their low cost, simplified preparation, and outstanding stability even under harsh conditions. However, the CsPbBr3 perovskite always suffers from an undesirable crystallization and film morphology with incomplete coverage and numerous grain boundaries. Herein, a novel dual promotion strategy combining interface modification with ion doping is proposed to achieve highly efficient and stable carbon-based planar CsPbBr3 PSCs. A thin CsBr modified layer was first inserted between the compact TiO2 (c-TiO2) and PbBr2 layers, wherein the crystallization of PbBr2 can be enhanced and then assist the growth of perovskite grains can be provided, so that CsPbBr3 films can reduce pinhole generation and accelerate carrier extraction, and decrease the hysteresis effect. Then an appropriate cobalt (Co2+) ion is doped into the CsPbBr3 film, which not only increases the grain size with decreasing grain boundary, but also ameliorates the energy level and recombination. Consequently, the champion power conversion efficiency (PCE) of the CsPbBr3 PSCs reaches up to 8.67% with an increment of about 30%. Moreover, the best-performing PSC without encapsulation also displays excellent humidity and thermal stability, maintaining above 98% of its initial PCE in an air atmosphere after 100 days, and over 95% under heat treatment at 85 °C after 600 hours, respectively. This study provides a promising route to boost the performance of all-inorganic perovskite solar cells.
- This article is part of the themed collection: Journal of Materials Chemistry C HOT Papers