Strong influence of strain gradient on lithium diffusion: flexo-diffusion effect†
Abstract
Lithium ion batteries (LIBs) work under a sophisticated external force field and the electrochemical properties could be modulated by strain. Owing to electro-mechanical coupling, the change of micro local structures can greatly affect the lithium (Li) diffusion rate in solid state electrolytes and the electrode materials of LIBs. In this study, we found, through first-principles calculations, that the strain gradient in bilayer graphene (BLG) significantly affects the Li diffusion barrier, which is termed as the flexo-diffusion effect. The Li diffusion barrier substantially decreases/increases under a positive/negative strain gradient, leading to a change of Li diffusion coefficient of several orders of magnitude at 300 K. Interestingly, the regulation effect of strain gradient is much more significant than that of a uniform strain field, which can have a remarkable effect on the rate performance of batteries, with a considerable increase in the ionic conductivity and a slight change of the original material structure. Moreover, our ab initio molecular dynamics simulations (AIMD) show that the asymmetric distorted lattice structure provides a driving force for Li diffusion, resulting in oriented diffusion along the positive strain gradient direction. We predict the new phenomenon of a flexo-diffusion effect from a theoretical calculation aspect, these findings could extend present LIB technologies by introducing a novel strain gradient engineering.
- This article is part of the themed collection: Celebrating 60 years of the Fujian Institute of Research on the Structure of Matter