Issue 6, 2020

Rational design of semiconducting polymer brushes as cancer theranostics

Abstract

Photonic theranostics (PTs) generally contain optical agents for the optical sensing of biomolecules and therapeutic components for converting light into heat or chemical energy. Semiconducting polymer nanoparticles (SPNs) as advanced PTs possessing good biocompatibility, stable photophysical properties, and sensitive and tunable optical responses from the ultraviolet to near-infrared (NIR) II window (300–1700 nm) have recently aroused great interest. Although semiconducting polymers (SPs) with various building blocks have been synthesized and developed to meet the demands of biophotonic applications, most of the SPNs were made by a nanoprecipitation method that used amphiphilic surfactants to encapsulate SPs. Such binary SP micelles usually exhibit weakened photophysical properties of SPs and undergo dissociation in vivo. SP brushes (SPBs) are products of functional post-modification of SP backbones, which endows unique features to SPNs (e.g. enhanced optical properties and multiple chemical reaction sites for the conjunction of organic/inorganic imaging agents and therapeutics). Furthermore, the SPB-based SPNs can be highly stable due to supramolecular self-assembly and/or chemical crosslinking. In this review, we highlight the recent progress in the development of SPBs for advanced theranostics.

Graphical abstract: Rational design of semiconducting polymer brushes as cancer theranostics

Article information

Article type
Review Article
Submitted
03 janv. 2020
Accepted
14 févr. 2020
First published
14 févr. 2020

Mater. Horiz., 2020,7, 1474-1494

Rational design of semiconducting polymer brushes as cancer theranostics

Z. Yang, L. Li, A. J. Jin, W. Huang and X. Chen, Mater. Horiz., 2020, 7, 1474 DOI: 10.1039/D0MH00012D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements