Control of local flexibility towards p-xylene sieving in Hofmann-type porous coordination polymers†
Abstract
Adsorption-based xylene isomer separation is more energy efficient than conventional processes. Herein, three isostructural Hofmann-type porous coordination polymers (PCPs), {M(Pz)[Ni(CN)4]n} (M = Fe, FePzNi, Co, CoPzNi, and Ni, NiPzNi; Pz = pyrazine) were synthesized and shown to exhibit coordination-dependent lability for the selectivity toward p-xylene over m- and o-xylene.
- This article is part of the themed collection: Functional Coordination Networks