Photoluminescent metal–organic frameworks and their application for sensing biomolecules
Abstract
Photoluminescence of metal–organic frameworks (MOFs) is sensitive to the structure and concentration of chemical species in the surroundings since MOFs combine the advantages of highly ordered porous structures, varied luminescence origins and diversified host–guest interactions. The diversity and combination flexibility of the organic and inorganic components together with the voids within MOFs offer ample possibilities for tuning their luminescence properties. On the basis of their intrinsic framework structures and biocompatible building blocks, MOFs have stimulated great interest in the area of biosensors. By elaborating on these points, this review will provide up-to-date developments in luminescent MOFs (LMOFs) with emphasis on synthetic approaches and their application in sensing biomolecules. The design outline of LMOFs including functionalization with fluorescent linkers and metal centers and incorporating fluorescent guest molecules within MOFs is presented, and the sensing properties of LMOFs for biomolecules such as DNA/RNA, enzymes/proteins, amino acids, glucose, ascorbic acid, and antibiotics are summarized.
- This article is part of the themed collection: Recent Review Articles