Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: an efficient electrocatalyst for the oxygen evolution reaction†
Abstract
Herein, we effectively modulate the electronic structure of Co3Fe layered double hydroxides (LDHs) by F-doping using a CHF3-plasma etching technique. CHF3-plasma can selectively fill oxygen vacancies with Fâ ions that can drastically tune the electronic structure with the highest electronegativity and create metal vacancies at the same time. The as-obtained F-Co3Fe LDH ultrathin nanosheets exhibit excellent oxygen evolution reaction (OER) properties. The outstanding electrochemical activity can be attributed to the incorporation of Fâ ions that strongly modulate the charge distribution of surrounding atoms to facilitate the adsorption of OER intermediates. This work provides a simple way to create metal vacancies and selectively fill oxygen vacancies with fluorine at the same time, and brings about a deep understanding of the electronic environment-activity relationship of LDHs for the OER.
- This article is part of the themed collection: 2019 Journal of Materials Chemistry A HOT Papers