In vivo tumor active cancer targeting and CT-fluorescence dual-modal imaging with nanoprobe based on gold nanorods and InP/ZnS quantum dots†
Abstract
In this paper, gold nanorods and InP/ZnS quantum dots were encapsulated together in a silica medium, and the targeting molecular peptide c(RGDfC) was further connected after surface modification with PEG and PEG derivatives to prepare a multifunctional Au@QD@SiO2/PEG-c(RGDfC) probe. Dynamic Light Scattering showed that the probe size was about 215.01 ± 2.72 nm, and its dispersibility was good. In in vitro experiments when the concentration was as high as 200 μg mL−1, the activity of the cells was still 85% due to low toxicity. In vivo experiments showed that the probe had excellent tumor targeting, X-ray computed tomography (CT) imaging and fluorescence imaging capabilities. The experiments revealed that the probe had a long blood circulation time (T1/2 = 7.78 h) in mice. Biochemical analysis, liver enzyme analysis and histomorphological analysis after probe injection showed that the probe had no obvious side effects on the normal functions of the main organs, indicating good biosafety. In vivo imaging experiments showed that 6 d after intravenous injection, the tumor sites of a HeLa tumor-bearing nude mice positive group presented obvious fluorescence and CT signals, indicating that the prepared nanoprobe had good tumor targeting dual-mode imaging capabilities and therefore showed great potential in biomedical imaging applications, especially the diagnosis of cancer.
- This article is part of the themed collections: International Year of the Periodic Table: Precious metals for cancer treatment and Cancer Diagnostics