Solid-state fluorescent materials based on coumarin derivatives: polymorphism, stimuli-responsive emission, self-assembly and optical waveguides†
Abstract
Solid-state fluorescent materials have attracted a surge of interest in recent years due to their wide applications in the fields of photoelectric devices, memory storage and fluorescent probes. Compared to the synthesis of new molecules, exploring new properties in known molecules is a facile approach to obtain functionalized fluorescent materials. In this report, we systematically explored the solid-state photoluminescence properties and applications of 7-(diethylamino)coumarin-3-aldehyde (DCA) and 7-(diethylamino)coumarin-3-carboxylic acid (DCCA). Both fluorophores exhibited a special concentration-dependent emission effect. They displayed polymorphism dependent solid-state emission and single crystal analysis revealed that enhanced overlap between neighbouring molecules resulted in a red-shifted emission. Crystal-to-crystal transformation has also been achieved for both DCA and DCCA by employing an external thermal treatment. In addition, the solid powder of DCA and DCCA displayed fluorescence response to HCl and NH3 gas with high sensitivity. Furthermore, 1D micromaterials were assembled for both fluorophores and DCA exhibited outstanding optical waveguide behavior.
- This article is part of the themed collection: Materials Chemistry Frontiers HOT articles for 2018