A novel electrochemical immunoassay for carcinoembryonic antigen based on glucose oxidase-encapsulated nanogold hollow spheres with a pH meter readout
Abstract
A portable electrochemical immunosensing protocol was designed for the sensitive detection of a disease-related tumor biomarker (carcinoembryonic antigen, CEA, used in this case) on a pH meter using glucose oxidase (GOx)-encapsulated gold hollow microspheres (AuHMs) for signal amplification. The assay was carried out on a monoclonal anti-CEA capture antibody-coated microplate with a sandwich-type reaction mode. The GOx-entrapped AuHM was first synthesized using the reverse micelle method and then used as the signal-generation tag for the labeling of polyclonal anti-CEA detection antibody. Accompanying the formation of the sandwiched immunocomplexes, the loaded GOx molecules in the microsphere could catalyze glucose into gluconic acid and hydrogen peroxide. The as-produced gluconic acid changed the microenvironment of the detection solution, thus resulting in the shift of the pH value, which could be quantitatively determined on a portable pH meter. The use of gold hollow microspheres was expected to enhance the loaded amount of GOx for signal amplification. Two labeling protocols including GOx-labeled secondary antibody and GOx-AuHM-labeled secondary antibody were investigated for CEA detection, and improved analytical features were acquired with GOx-AuHM labeling. With the GOx-AuHM labeling strategy, the pH meter-based immunosensing device exhibited a good analytical performance for CEA detection within the dynamic linear range of 0.1–100 ng mL−1 at a detection limit of 0.062 ng mL−1. The strong attachment of anti-CEA antibodies to GOx-AuHM brought a good repeatability and intermediate precision down to 10%. Importantly, no significant differences at the 0.05 significance level were encountered in the analysis of 12 human serum specimens between the developed immunoassay and the commercialized electrochemiluminescent method for CEA determination.
- This article is part of the themed collection: Recent analytical chemistry science from China