Engineering the surface charge states of nanostructures for enhanced catalytic performance
Abstract
Charge transfer typically takes place between the catalyst surface and the reaction species, accompanied by species adsorption and activation. The surface charge state of the catalyst thus becomes a major factor for tuning catalytic performance in addition to surface active sites. By tailoring the surface charge states, the reaction activity and selectivity can be tuned to optimize the performance of a specific catalytic application. In this review, we focus on the recent progress in materials design concerned with the modification of surface charge states toward enhanced catalytic performance. With the active sites categorized into metal and semiconductor surfaces, we outline the strategies for tailoring the surface charge states of metal and semiconductor catalysts, respectively, which are mainly based on interfacial electronic effects with various contact matters. The surface charge engineering approach has been implemented in a variety of model catalytic reactions including catalytic organic reactions, electrocatalysis, photocatalysis and CO oxidation reaction. The fundamental mechanisms behind each case are elucidated in this article. Finally, the major challenges and opportunities in this research field are discussed.
- This article is part of the themed collection: 2017 Materials Chemistry Frontiers Review-type Articles