Issue 5, 2017

Metal-deposited bismuth oxyiodide nanonetworks with tunable enzyme-like activity: sensing of mercury and lead ions

Abstract

In this study, we demonstrate that the enzyme-like activity of bismuth oxyiodide (BiOI) nanonetworks can be regulated through homogeneous deposition of metal atoms/ions or nanoparticles. Bismuth oxyhalide (BiOX; X = Cl, Br or I) nanostructures were prepared from a simple mixture of bismuth ions (Bi3+) and halide ions (X) in aqueous solution. The BiOI nanonetworks exhibited much stronger (>25-fold) peroxidase-like activity than BiOCl or BiOBr nanosheets. In situ formation and deposition of gold nanoparticles (Au NPs) onto BiOI nanonetworks greatly enhanced the oxidase-like activity of the nanocomposites. The deposition of Ni, Zn or Mn on the BiOI nanonetworks boosted their peroxidase-like activity by at least 3-fold. Moreover, the catalase-like activity of the BiOI nanonetworks was elevated after deposition of MnO2 or ZnO nanoparticles. The enzyme-like activity of BiOI regulated by the deposition of metals was mainly due to the changes in the electronic and band structures of the BiOX nanonetworks, and the existence of surface metal atoms/ions in various oxidation states. We used the Au NPs/BiOI nanocomposites and NiO NPs/BiOI nanocomposites for the detection of Hg2+ and Pb2+ heavy metal ions, respectively, based on the suppression of the enzyme-like activity of the nanocomposite after deposition of these metal ions. These BiOI nanocomposite-based probes allow the selective detection of Hg2+ and Pb2+ down to nanomolar quantities. The practicality of these two nanozyme probes was validated by analysis of Hg2+ and Pb2+ ions in environmental water samples (tap water, river water, lake water, and sea water).

Graphical abstract: Metal-deposited bismuth oxyiodide nanonetworks with tunable enzyme-like activity: sensing of mercury and lead ions

Supplementary files

Article information

Article type
Research Article
Submitted
29 juil. 2016
Accepted
13 nov. 2016
First published
07 déc. 2016

Mater. Chem. Front., 2017,1, 893-899

Metal-deposited bismuth oxyiodide nanonetworks with tunable enzyme-like activity: sensing of mercury and lead ions

C. Hsu, C. Lien, S. G. Harroun, R. Ravindranath, H. Chang, J. Mao and C. Huang, Mater. Chem. Front., 2017, 1, 893 DOI: 10.1039/C6QM00149A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements