A reaction model on the self-assembly process of octahedron-shaped coordination capsules†
Abstract
Herein, the self-assembly process of an octahedron-shaped coordination capsule was analyzed based on a master equation approach using a reaction network model. This model was found to adequately reproduce the overall experimentally observed time evolutions and enabled us to trace the real-time evolution of transient intermediates, ranging from milli-second to hours. The time evolution of the distribution of individual intermediates species was obtained; a few linear-oligomers located near the reactant were produced at first, followed by an explosive increase in several types of intermediates. All of them were then consolidated into a few species just before the formation of the final product. A long-lived [Pd618Py]12+ is a key compound, which acts as a kinetic trap in the reaction dynamics.
- This article is part of the themed collection: 2017 PCCP HOT Articles