Issue 7, 2017

On the efficacy of anthracene isomers for triplet transmission from CdSe nanocrystals

Abstract

The effect of isomeric substitutions on the transmitter for triplet energy transfer (TET) between nanocrystal (NC) donor and molecular acceptor is investigated. Each isomeric acceptor is expected to bind in a unique orientation with respect to the NC donor. We see that this orbital overlap drastically affects the transmission of triplets. Here, two functional groups, the carboxylic acid and dithiocarbamate, were varied between the 1-, 2- and 9-positions of the anthracene ring to give three ACA and three ADTC isomers. These six anthracene isomers served as transmitters for triplets between CdSe NC sensitizers and 9,10-diphenylanthracene annihilators for photon upconversion. The photon upconversion quantum yield (QY) is the highest for 9-ACA (12%), lowest for 9-ADTC (0.1%), around 3% for both 1-ACA and 1-ADTC, and about 1% for the 2-isomers. These trends in QYs are reflected in the rates of TET given by ultrafast transient absorption spectroscopy where a maximum of 3.8 × 107 s−1 for 9-ACA was measured. Molecular excited state energy levels were measured both in solution and polymer hosts to correlate structure to TET. This work confirms that anthracene excited states levels are very sensitive to molecular substitution, which in combination with orbital overlap, critically affect Dexter-based TET.

Graphical abstract: On the efficacy of anthracene isomers for triplet transmission from CdSe nanocrystals

Supplementary files

Article information

Article type
Communication
Submitted
13 oct. 2016
Accepted
30 nov. 2016
First published
30 nov. 2016

Chem. Commun., 2017,53, 1241-1244

On the efficacy of anthracene isomers for triplet transmission from CdSe nanocrystals

P. Xia, Z. Huang, X. Li, J. J. Romero, V. I. Vullev, G. S. H. Pau and M. L. Tang, Chem. Commun., 2017, 53, 1241 DOI: 10.1039/C6CC08229G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements