Electronic and magnetic properties of n-type and p-doped MoS2 monolayers
Abstract
The electronic and magnetic properties of n- and p-type impurities by means of group V and VII atoms substituting sulfur in a MoS2 monolayer were investigated using first-principles methods based on density functional theory. Numerical results show that group V and VII atoms can induce magnetic properties, and the magnetic moment mainly originates from the dopant’s p orbital and neighbor Mo atoms’ d orbital. N-, P-, F-, and I-doped (or As-doped) MoS2 exhibits magnetic nanomaterial (or metallic) features, and Cl- and Br-doped systems exhibit half-metallic ferromagnetism (HMF). Moreover, the formation energy calculations also indicate that it is energetically favorable and relatively easier to incorporate group V and VII atoms into a MoS2 monolayer under Mo-rich experimental conditions. The formation energy of the F-doped system is the lowest, the next lowest formation energy is obtained in the Cl-doped system. By comparison, Cl-doped MoS2 is more suitable for spin injection. This finding is important for the achievement of spin devices on MoS2 nanostructures.
- This article is part of the themed collection: 2D Materials: Explorations Beyond Graphene