Issue 46, 2014

3-D scaffold platform for optimized non-viral transfection of multipotent stem cells

Abstract

Optimization of non-viral gene delivery from biomaterials is of critical importance, as several material parameters are known to influence non-viral transfection efficiency. A series of previous studies have achieved screening of gene delivery vectors on two dimensional (2D) substrates, which have direct relevance to cell culture applications. There is an additional need to create screening systems that are 3-dimensional (3D), and can thus be applied to emerging tissue engineering applications. Here, we report an enhanced throughput, 3D scaffold platform to screen for the influence of mineral coating properties on stem cell transfection. Mineral coatings with a range of physicochemical properties were formed on the scaffolds within a 96-well plate format, while maintaining an interconnected macroporous scaffold structure. A series of general gene delivery parameters, including plasmid DNA amount, N/P ratio, and cell density, were efficiently screened in scaffolds using a luciferase-encoding plasmid as a reporter. In addition, human mesenchymal stem cell (hMSC) transfection with a plasmid encoding bone morphogenetic protein-2 (BMP-2) was successfully optimized by screening a library of mineral coatings, resulting in over 5-fold increases in BMP-2 production when compared to standard techniques. Notably, the majority of BMP-2 was incorporated into the mineral coating following secretion from the cells. The 3D mineral coated scaffold platform described here may accelerate gene delivery optimization and improve the predictability of the screening systems, which could facilitate translation of gene delivery to clinical applications.

Graphical abstract: 3-D scaffold platform for optimized non-viral transfection of multipotent stem cells

Supplementary files

Article information

Article type
Paper
Submitted
14 juin 2014
Accepted
14 août 2014
First published
15 août 2014

J. Mater. Chem. B, 2014,2, 8186-8193

Author version available

3-D scaffold platform for optimized non-viral transfection of multipotent stem cells

X. Yu and W. L. Murphy, J. Mater. Chem. B, 2014, 2, 8186 DOI: 10.1039/C4TB00957F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements