Issue 34, 2011

Density functional studies of functionalized graphitic materials with late transition metals for oxygenreduction reactions

Abstract

Low-temperature fuel cells are appealing alternatives to the conventional internal combustion engines for transportation applications. However, in order for them to be commercially viable, effective, stable and low-cost electrocatalysts are needed for the Oxygen Reduction Reaction (ORR) at the cathode. In this contribution, on the basis of Density Functional Theory (DFT) calculations, we show that graphitic materials with active sites composed of 4 nitrogen atoms and transition metal atoms belonging to groups 7 to 9 in the periodic table are active towards ORR, and also towards Oxygen Evolution Reaction (OER). Spin analyses suggest that the oxidation state of those elements in the active sites should in general be +2. Moreover, our results verify that the adsorption behavior of transition metals is not intrinsic, since it can be severely altered by changes in the local geometry of the active site, the chemical nature of the nearest neighbors, and the oxidation states. Nonetheless, we find that these catalysts trend-wise behave as oxides and that their catalytic activity is limited by exactly the same universal scaling relations.

Graphical abstract: Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions

Supplementary files

Article information

Article type
Paper
Submitted
18 avr. 2011
Accepted
11 juil. 2011
First published
27 juil. 2011

Phys. Chem. Chem. Phys., 2011,13, 15639-15643

Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions

F. Calle-Vallejo, J. I. Martínez and J. Rossmeisl, Phys. Chem. Chem. Phys., 2011, 13, 15639 DOI: 10.1039/C1CP21228A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements