The strategies of boosting the performance of highly reversible zinc anodes in zinc-ion batteries: recent progress and future perspectives
Abstract
Rechargeable zinc-metal batteries have attracted widespread attention recently as a potential substitute for lithium-ion batteries due to their low cost, large volumetric capacity and the capability to use a safe aqueous electrolyte. However, the poor cycling durability and low coulombic efficiency of zinc anodes substantially restrict their further development, which should be attributed to the severe dendrite growth, surface passivation, and hydrogen evolution across the repeated plating/stripping processes. Plentiful research studies have been devoted to addressing these critical issues. In this review, we present a comprehensive overview of the Zn electrode from its issues to the strategy of boosting its reversibility including the rational design of zinc anodes, modification of the anode–electrolyte interface, electrolyte engineering and the novel design of the battery configuration, and provide reference for further research work in the future expecting to achieve significant progress in this field.
- This article is part of the themed collection: Sustainable Energy and Fuels Recent Review Articles